Astrophys. Space Sci. Trans., 6, 1-7, 2010
www.astrophys-space-sci-trans.net/6/1/2010/
doi:10.5194/astra-6-1-2010
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
 
13 Jan 2010
Modelling the steady state spectral energy distribution of the BL-Lac Object PKS 2155-30.4 using a selfconsistent SSC model
M. Weidinger, M. Rüger, and F. Spanier
Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

Abstract. In this paper we present a fully selfconsistent SSC model with particle acceleration due to shock and stochastic acceleration (Fermi-I and Fermi-II-Processes respectively) to model the quiescent spectral energy distribution (SED) observed from PKS 2155. The simultaneous August/September 2008 multiwavelength data of H.E.S.S., Fermi, RXTE/SWIFT and ATOM give new constraints to the high-energy peak in the SED concerning its curvature. We find that, in our model, a monoenergetic injection of electrons at γ0=910 into the model region, which are accelerated by Fermi-I- and Fermi-II-processes while suffering synchrotron and inverse Compton losses, finally leads to the observed SED of PKS 2155-30.4 shown in H.E.S.S. and Fermi-LAT collaborations (2009). In contrast to other SSC models our parameters arise from the jet's microphysics and the spectrum is evolving selfconsistently from diffusion and acceleration. The γ0-factor can be interpreted as two counterstreaming plasmas due to the motion of the blob at a bulk factor of Γ=58 and opposed moving upstream electrons at moderate Lorentz factors with an average of γu≈8.

Citation: Weidinger, M., Rüger, M., and Spanier, F.: Modelling the steady state spectral energy distribution of the BL-Lac Object PKS 2155-30.4 using a selfconsistent SSC model, Astrophys. Space Sci. Trans., 6, 1-7, doi:10.5194/astra-6-1-2010, 2010.
 
Search ASTRA
Download
PDF XML
Citation
Share