
Astrophys. Space Sci. Trans., 8, 35–40, 2012
www.astrophys-space-sci-trans.net/8/35/2012/
doi:10.5194/astra-8-35-2012
© Author(s) 2012. CC Attribution 3.0 License. Astrophysics andSpace Sciences

Tr ansactions

Fitting Analytical forms of spatial and temporal correlation
functions to spacecraft data

A. Shalchi

Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

Correspondence to:A. Shalchi (andreasm4@yahoo.com)

Received: 21 June 2012 – Revised: 3 September 2012 – Accepted: 10 September 2012 – Published: 5 October 2012

Abstract. Spacecraft missions such as Wind and ACE can
be used to determine magnetic correlation functions in the
solar wind. From such data sets one can obtain spatial and
temporal correlations of magnetic fields. Such correlations
are fundamental in the theory of magnetic turbulence and are
important to describe the statistics of magnetic field lines and
the propagation of energetic particles such as cosmic rays. In
the present article we compare analytical forms of correlation
functions with measurements performed in the solar system.
We obtain new values for the correlations length scales and
we test our understanding of the turbulence dynamics.

1 Introduction

The understanding of turbulence is fundamental in plasma
and astrophysics. In order to achieve a complete theoret-
ical description of turbulence, one has to know the spatial
and temporal structures. However, those are difficult to ac-
cess experimentally. The understanding of turbulent plasmas
is important for describing the propagation and acceleration
of energetic particles such as cosmic rays. The spatial cor-
relation functions and correlations lengths have a direct in-
fluence on the charged particle diffusion coefficients along
and across the mean magnetic field (e.g.Shalchi, 2009). The
temporal or Eulerian correlations control the parallel diffu-
sion coefficient of low-energy particles (e.g.Bieber et al.,
1994; Shalchi et al., 2006). Temporal and spatial correlation
functions are also important in the theory of random walking
magnetic field lines (e.g.Shalchi et al., 2007, 2012).

In recent years more and more experiments have been per-
formed to study magnetic fields in the interplanetary space.
The Advanced Composition Explorer (ACE), for instance, is
a space exploration mission to study the solar wind and ener-
getic particles such as galactic cosmic rays. Another exam-
ple is the WIND satellite which was built to study the solar
wind plasma. Cluster II is a space mission of the European

Space Agency to study the Earth’s magnetosphere over the
course of an entire solar cycle. Simultaneous magnetic field
data from Wind, ACE, and Cluster spacecraft can be used to
determine the magnetic correlations near Earth’s orbit (e.g.
Matthaeus et al., 2005; Dasso et al., 2007). Matthaeus et
al. (2010) obtained temporal correlations of magnetic fluc-
tuations in the interplanetary field by using Wind and ACE.
From such observations detailed information about the spa-
tial and temporal decorrelation of turbulence can be deduced.

The evolution of the interplanetary magnetic field spa-
tial structure has been investigated in the recent years (see
Dasso et al., 2005; Ruiz et al., 2011). It was shown that
the nature of the turbulence anisotropy differs in the fast
(VSW > 500 km/s) and slow solar wind (VSW < 400 km/s).
In particular, the fast streams are more dominated by fluctua-
tions with wavevectors quasi-parallel to the local field. Such
fluctuations are usually called slab modes. Slow streams,
which appear to be more fully evolved turbulence, are more
dominated by quasi-perpendicular fluctuation wavevectors.
Such fluctuations are usually called two-dimensional modes.

There is also some theoretical work available which allows
to compute the correlation functions analytically. Such cal-
culations are based on standard models for interplanetary tur-
bulence (e.g.Matthaeus et al., 2007; Shalchi and Weinhorst,
2009) in the wavevector or Fourier space. It is the purpose of
the present paper to compare such analytical forms directly
with the measurements performed in the past. This will help
to test our understanding of interplanetary turbulence and to
obtain turbulence parameters such as the correlation lengths
and times.

2 Spatial and temporal structure of turbulence

Here we discuss some fundamental quantities which are used
to describe magnetic turbulence. More details can be found
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in the literature (e.g.Batchelor, 1970; Matthaeus and Smith,
1981; Matthaeus and Goldstein, 1982; Shalchi, 2009).

2.1 The turbulence correlation function

A key function in turbulence theory is the two-point-two-
time correlation tensor. For homogeneous turbulence its
components are

Rlm(x,t)=
〈
δBl(x,t)δB∗

m(0,0)
〉
. (1)

The brackets〈...〉 used here denote the ensemble average.
It is convenient to introduce the correlation tensor in the
wavevector space. By using the Fourier representation

δBl(x,t) =

∫
d3k δBl(k,t)eik·x (2)

we find

Rlm(x,t)=

∫
d3k

∫
d3k

′
〈
δBl(k,t)δB∗

m(k
′

,0)
〉
eik·x . (3)

For homogeneous turbulence we have〈
δBl(k,t)δB∗

m(k
′

,0)
〉

= Plm(k,t)δ(k − k
′

) with the cor-

relation tensor in thek−spacePlm(k,t). By assuming the
same temporal behavior of all tensor components, we have
Plm(k,t) = Plm(k) 0(k,t) with the dynamical correlation
function0(k,t). Equation (3) becomes then

Rlm(x,t)=

∫
d3k Plm(k)0(k,t)eik·x (4)

with the magnetostatic tensorPlm(k) =
〈
δBl(k)δB∗

m(k)
〉
.

2.2 The two-component turbulence model

In this paragraph we discuss the static tensorPlm(k).
Matthaeus and Smith (1981) have shown that for axi-
symmetric turbulence the correlation tensor has the form

Plm(k) = A(k‖,k⊥)

[
δlm −

klkm

k2

]
, l,m = x,y (5)

andPlz = Pzm = 0. In our case the symmetry-axis has to be
identified with the axis of the uniform mean magnetic field1

B0 = B0ez. Furthermore, we neglect magnetic helicity and
we assume that the parallel component of the turbulent field
is zero or negligible small (δBz ≈ 0). A simple model for the
function A(k‖,k⊥) is the so-called slab model in which we
assume the form

Aslab(k‖,k⊥) = gslab(k‖)
δ(k⊥)

k⊥

. (6)

1In most of the physical scenarios,B0 is not a real constant and
we don’t have a uniform field. However, it can be locally defined
from an average over spatial scales of the order of the so-called
integral scale (seeMatthaeus et al., 2012).

Here we have used the Dirac delta functionδ(z) and the one-
dimensional spectrum of the slab modesgslab(k‖) which is
discussed below. In this model the wave vectors are aligned
parallel to the mean field (k ‖ B0).

Another model with reduced dimensionality is the two-
dimensional (2D) model whereA(k‖,k⊥) has the form

A2D(k‖,k⊥) = g2D(k⊥)
δ(k‖)

k⊥

(7)

with the spectrum of the two-dimensional modesg2D(k⊥).
In this model the wave vectors are aligned perpendicular
to the mean field (k ⊥ B0) and are therefore in a two-
dimensional plane.

In reality the turbulent fields can depend on all three coor-
dinates of space. A more realistic, quasi three-dimensional
model for the turbulence is the slab/2D composite (or two-
component) model. In the latter model we assume a superpo-
sition of slab and two-dimensional fluctuationsP

comp
lm (k) =

P slab
lm (k)+P 2D

lm (k). In the composite model the total strength
of the fluctuations isδB2

= δB2
slab+ δB2

2D. The composite
model is often used to approximate solar wind turbulence. It
was demonstrated by several authors (e.g.Bieber et al., 1994,
1996) that the slab fraction should be 20% and the fraction
of the two-dimensional modes should be 80%. Therefore the
two-dimensional modes should be dominant in the solar wind
at 1 AU heliocentric distance.

More turbulence models can be found in the literature.
RecentlyWeinhorst and Shalchi(2010) have extended the
slab/2D model to allow a spread of the wave vectors. We
expect to find different turbulence properties at different lo-
cations. E.g. solar wind turbulence should be different from
the interstellar turbulence due to the different driving pro-
cesses. Some discussions of the different behavior of tur-
bulence in the different physical systems was presented re-
cently (e.g.Hunana and Zank, 2010; Shalchi et al., 2010). In
the present article we focus on interplanetary turbulence at
short heliocentric distances. In this case the model of slab
and two-dimensional modes should provide a good approxi-
mation and is in agreement with the observed Maltese cross
structure in the solar wind (seeMatthaeus et al., 1990; Wein-
horst and Shalchi, 2010).

2.3 The turbulence spectra

The wave spectrum describes the wave number dependence
of A(k‖,k⊥). In the slab model the spectrum is described by
the functiongslab(k‖) and in the two-dimensional model by
g2D(k⊥). For the two spectra we use the models proposed by
Shalchi and Weinhorst(2009)

gslab(k‖) =
D(s,qslab)

2π
δB2

slablslab

×
(k‖lslab)

qslab[
1+(k‖lslab)2

](s+qslab)/2
(8)
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and

g2D(k⊥) =
2D(s,q2D)

π
δB2

2Dl2D

×
(k⊥l2D)q2D[

1+(k⊥l2D)2
](s+q2D)/2

. (9)

Here we have used the turbulence strength of the slab modes
δB2

slab and the 2D modesδB2
2D, respectively. The parame-

ters lslab and l2D are the two bendover scales denoting the
turnover from the energy range to the inertial range of the
spectrum. In the two model spectra defined above we allow
different values of the energy range spectral indexesqslaband
q2D. For the inertial range spectral indexs we assume the
same values. Furthermore, we used the normalization func-
tion D(s,q) = {0[(s + q)/2]}/{20[(s − 1)/2]0[(q + 1)/2]}

where we have used the Gamma function0(z).

2.4 Correlation functions for dynamical turbulence

The correlation function for dynamical turbulence is given by
Eq. (1) and can be computed by evaluating Eq. (4). Based on
the latter formula,Shalchi(2008b) has shown that the com-
bined correlation functionR⊥ = Rxx +Ryy is given by

Rslab
⊥

(z,t)= 8π

∫
∞

0
dk‖ gslab(k‖)cos(k‖z)0

slab(k‖,t) (10)

for slab turbulence and

R2D
⊥

(ρ,t) = 2π

∫
∞

0
dk⊥ g2D(k⊥)J0(k⊥ρ)02D(k⊥,t) (11)

for two-dimensional turbulence. Here we have used the
Bessel functionJ0(x). The two correlations depend on time
t , the parallel distancez, and the perpendicular distanceρ =√

x2+y2. To evaluate these equations we have to specify the
dynamical correlation functions0slab(k‖,t) and02D(k⊥,t)

which is done in Sect. 2.6.

2.5 Spatial correlation functions

Spatial correlations can be calculated by settingt = 0 in
Eqs. (10) and (11). We find for slab modes

Rslab
⊥

(z) = 8π

∫
∞

0
dk‖ gslab(k‖)cos(k‖z) (12)

and for two dimensional modes

R2D
⊥

(ρ) = 2π

∫
∞

0
dk⊥ g2D(k⊥)J0(k⊥ρ). (13)

Those functions have been calculated analytically inShalchi
(2008a) for the special caseqslab= q2D = 0. Here we dis-
cuss spatial correlations for the more general spectra defined
above. In this case Eq. (12) becomes for slab modes

Rslab
⊥

(z) = 4D(s,qslab)δB
2
slab

×

∫
∞

0
dx

xqslab[
1+x2

](s+qslab)/2
cos

(
xz

lslab

)
(14)

and for two dimensional modes

R2D
⊥

(ρ) = 4D(s,q2D)δB2
2D

×

∫
∞

0
dx

xq2D[
1+x2

](s+q2D)/2
J0

(
xρ

l2D

)
. (15)

Here we have used the integral transformationsx = k‖lslab
andx = k⊥l2D, respectively. In Sect. 3.1 we compare these
formulas with solar wind data.

2.6 An advanced dynamical turbulence model

In order to compute temporal correlations one has to spec-
ify the dynamical correlation function0(k,t). An advanced
model for the latter function has been proposed byShalchi
et al.(2006). This model is called the Nonlinear Anisotropic
Dynamical Turbulence (NADT) model and is based on an
improved understanding of solar wind turbulence (e.g.She-
balin, 1983; Matthaeus et al., 1990; Tu and Marsch, 1993;
Oughton et al., 1994; Goldreich and Sridhar, 1995; Zhou et
al., 2004; Oughton et al., 2006). To avoid lengthy discus-
sions of this model, we just refer toShalchi et al.(2006)
where this model has been introduced. An important feature
of this model is that slab modes and two-dimensional modes
are assumed to be coupled, i.e., the slab correlation function
0slab(k‖,t) can depend on properties of the two-dimensional
modes and the dynamical correlation function02D(k⊥,t) can
depend on the properties of the slab modes.

As described inShalchi et al.(2006) andShalchi(2008b) a
reasonable approximation for the two dynamical correlation
functions should be given by

0slab(k‖,t)= cos(ωt)e−β t (16)

and

02D(k⊥,t)= e−γ (k⊥) t . (17)

Here we have used

γ (k⊥) = β

{
1 for k⊥l2D ≤ 1

(k⊥l2D)2/3 for k⊥l2D ≥ 1
(18)

which can be approximated by

γ (k⊥) ≈ β(1+k⊥l2D)2/3
≈ β

[
1+(k⊥l2D)2

]1/3
(19)

for simplicity. Furthermore, we have employed

β =
√

2
vA

l2D

δB2D

B0
. (20)

For the plasma wave dispersion relation we assume parallel
propagating shear Alfv́en waves withω = vAk‖ in Eq. (16).
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Fig. 1. Spatial correlations for slab modes andqslab= 0. We
compare theoretical results forlslab= 0.3 · 106 km (dotted line),
lslab= 0.6·106 km (solid line), andlslab= 1.0·106 km (dashed line)
with the observations (black dot) fromDasso et al.(2007).

Table 1. The results for the two-dimensional bendover scalel2D

obtained for different values of the energy range spectral indexq2D .
The results were obtained by comparing theoretical results with the
observations presented inDasso et al.(2007).

Spectral indexq2D Best fitl2D in km Best fitl2D in AU

0.0 0.8·106 km 0.005 AU
1.5 1.7·106 km 0.011 AU
5.0 3.0·106 km 0.020 AU

2.7 Temporal correlation functions

In the following we calculate the (combined) single-point-
two-time correlation function defined byE⊥(t) := R⊥(x =

0,t). The latter function is also known as Eulerian correlation
function. We obtain the Eulerian correlations from Eqs. (10)
and (11) by settingz = 0 andρ = 0 therein

Eslab
⊥

(t) = 8π

∫
∞

0
dk‖ gslab(k‖)0

slab(k‖,t)

E2D
⊥

(t) = 2π

∫
∞

0
dk⊥ g2D(k⊥)02D(k⊥,t). (21)

Such correlation functions were already calculated analyti-
cally in Shalchi(2008b) for a constant spectrum in the energy
range (qslab= q2D = 0 in our notation). It is straightforward
to extend those results for the spectra defined in Eqs. (8) and
(9). In this case and for the NADT model the following ana-
lytical forms can be found

Eslab
⊥

(t) = 4D(s,qslab)δB
2
slab

∫
∞

0
dx

xqslab

(1+x2)(s+qslab)/2

× cos(xvAt/ lslab)e
−ξvAt/ l2D (22)
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Fig. 2. Spatial correlations for two-dimensional modes for different
values ofq2D . We compare theoretical results forq2D = 0 with
l2D = 0.8·106 km (dotted line),q2D = 1.5 with l2D = 1.7·106 km
(solid line), andq2D = 5.0 with l2D = 3.0 · 106 km (dashed line)
with the observations (black dots) fromDasso et al.(2007).

and

E2D
⊥

(t) = 4D(s,q2D)δB2
2D

∫
∞

0
dx

xq2D

(1+x2)(s+q2D)/2

× e−ξ(1+x2)1/3vAt/ l2D . (23)

Here we have used again the integral transformationsx =

k‖lslab and x = k⊥l2D, respectively. Furthermore we have
used the parameterξ =

√
2δB2D/B0. In Sect. 3.2 we evalu-

ate Eqs. (22) and (23) numerically and compare our findings
with spacecraft data.

3 Comparison with spacecraft data

3.1 Spatial correlation functions

For slab modes we calculate spatial correlations fors = 5/3
andqslab= 0 and compare the result with the observations
obtained byDasso et al.(2007). These observations were
obtained for the fast solar wind2 (VSW > 470 km/s). Dasso
et al.(2007) (see Fig. 2 for the case 0o of their paper) found
for the spatial correlations along the mean magnetic field that
R⊥(z = 380000km) ≈ 0.4 AU. In Fig.1 we fit Eq. (12) to the
observations. We obtain the best fit forlslab≈ 0.6·106 km=

0.004 AU3. We like to emphasize thatlslab is the slab ben-
dover scale and not the correlation length. Furthermore, this
fit is only correct if we indeed haveqslab= 0.

2It was shown (for instance inDasso et al., 2005) that the struc-
ture of the correlation function can differ for fast and slow solar
wind.

3Here we used Astronomical Units (AU) which is approximately
1 AU ≈ 150·106 km.
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Fig. 3. The two-dimensional Eulerian correlation function as a
function of the time. The observations (represented by the dots)
are fromMatthaeus et al.(2010) and the theoretical results were
computed by using Eq. (23). For the three theoretical results
we assumed thatδB2D =

√
0.8B0, q2D = 1.5, vA = 12 km/s, and

s = 5/3. We used different values for the bendover scale of the
two-dimensional modes, namelyl2D = 1.0 · 106 km (dotted line),
l2D = 0.8·106 km (dashed line), andl2D = 0.7·106 km (sold line).

In Fig. 2 we determine the two-dimensional bendover
scalel2D. In this case it is not clear what the energy range
spectral index is (e.g.Matthaeus et al., 2007). Thus, we have
calculated spatial correlations fors = 5/3 and for different
values ofq2D. For a different energy range spectral index we
get the best agreement with the observations for a different
bendover scale. Therefore, what we get forl2D depends on
what we assume forq2D. In Table1 the different parameter
couples are listed. For instance we find the best agreement
between theory and observations forl2D ≈ 1.7·106 km cor-
responding to 0.011 AU if we setq2D = 1.5.

3.2 Temporal correlation functions

Here we compare temporal or Eulerian correlations. As an
approximation we assume pure two-dimensional turbulence4

and setξ = 1.265. Furthermore we use agains = 5/3 for
the inertial range spectral index and for the Alfvén speed we
assumevA = 12 km/s. In Figs.3 and4 we have shown a com-
parison between the observations (Matthaeus et al., 2010)
and the results obtained by evaluating Eq. (23) numerically.
We have computed the temporal correlation functions for dif-
ferent values of the two-dimensional bendover scalel2D and
the energy range spectral indexq2D. It should be emphasized
that the parameterl2D is the bendover scale used in Eq. (9)
and not the correlation length. As shown in Figs.3 and4 we
can reproduce the measured temporal correlations. There-
fore, we conclude that the observations are consistent with
our understanding of the turbulence dynamics.

4Here we assume pure two-dimensional turbulence as approxi-
mation because two-dimensional modes are dominant in the solar
wind (Bieber et al., 1996). In the fast solar wind, however, there is
a significant slab contribution.
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Fig. 4. The two-dimensional Eulerian correlation function as a
function of the time. The observations (represented by the dots)
are fromMatthaeus et al.(2010) and the theoretical results were
computed by using Eq. (23). For the three theoretical results we
assumed thatδB2D =

√
0.8B0, l2D = 0.7 ·106 km, vA = 12 km/s,

ands = 5/3. We used different values for the energy range spectral
index, namelyq2D = 0.0 (dotted line),q2D = 1.5 (solid line), and
q2D = 5.0 (dashed line).

4 Conclusions

In the present paper we have compared analytical forms for
correlation functions based on the work ofShalchi(2008a,b)
with spacecraft measurements performed in the solar sys-
tem for the fast solar wind by using the Advanced Compo-
sition Explorer and the Wind spacecraft (e.g.Dasso et al.,
2007; Matthaeus et al., 2010). Based on this comparison we
found values for the bendover scales of the slab modes and
the two-dimensional modes, respectively. For the slab ben-
dover scale we find the best agreement forlslab≈ 0.6·106 km
= 0.004 AU. For the two-dimensional modes our findings for
the bendover scale depends on the assumption of the energy
range spectral indexq2D - see Table1 of the present pa-
per. Forq2D = 0.0 for instance we get the best fit by setting
l2D ≈ 0.8·106 km = 0.005 AU. Forq2D = 1.5, however, we
obtain l2D ≈ 1.7·106 km = 0.011 AU. It seems that the two
bendover scales are in the same order of magnitude. The val-
ues obtained in the present paper are close to those obtained
by Dasso et al.(2007).

We have also compared analytical results for the tempo-
ral or Eulerian correlation function with the observations ob-
tained byMatthaeus et al.(2010). In this case we have ap-
proximated the turbulence by using two-dimensional modes
which are dominant in the solar wind5 (seeBieber et al.,
1996). This comparison is shown in Figs.3 and4. As shown
the two-dimensional bendover scalel2D as well as the en-
ergy range spectral indexq2D have an influence on the Eu-
lerian correlations. Forq2D = 1.5 for instance, we find the
best agreement if the bendover scale isl2D ≈ 0.7 · 106 km

5There are indications that there is a significant slab contribution
in the fast solar wind.
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= 0.004 AU. For other values ofq2D we would find the best
agreement for a different bendover scale. Obviously the the-
oretical correlation function for these cases agrees very well
with the data points. Our results are summarized in Table1.

In the current paper we have compared spatial and tem-
poral correlation functions obtained analytically with solar
wind observations. By fitting turbulence parameters we ob-
tained a good agreement between theory and observations.
We have shown that critical parameters are the bendover
scaleslslab and l2D as well as the energy range spectral in-
dex of the two-dimensional modesq2D. The results of the
current paper show that the observations are consistent with
our present understanding of solar wind turbulence which is
based on the two-component model.
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