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Abstract. We present a model of the 27-day variation of the
galactic cosmic ray (GCR) intensity for three dimensional
(3-D) heliosphere with the heliolongitudinal and heliolati-
tudinal dependent radial solar wind speed for the period of
1995 - minimum epoch of solar activity (A > 0). In the
present model we implement heliolongitudinal asymmetry of
solar wind velocity reproducing as the sum of first and sec-
ond harmonics depending on the heliolatitudes and the reg-
ular part of the solar wind velocity (V0) changing versus he-
liolatitudes in accord to in situ measurements of the Ulysses
spacecraft. We show that the range of changes of the sum
of the first and second harmonics of the 27-day variation of
the GCR intensity for Kiel neutron monitor is little less than
expected from the modelling, however, they are comparable.

1 Introduction

Recently, we demonstrated that to model the 27-day variation
of the galactic cosmic ray (GCR) intensity, there should be
taken into account a consistent, divergence-free interplane-
tary magnetic field (IMF) derived from Maxwell’s equations
with the heliolongitudinally dependent solar wind velocity
reproducing in situ observations (Alania et al., 2010). We
believe that in situ measurements of the solar wind veloc-
ity and the IMF components only partly characterize electro-
magnetic properties of the whole vicinity of the interplan-
etary space where a formation of the 27-day variation of
GCR intensity takes place. Due to complexity of the pro-
cesses on the Sun and in the three dimensional (3-D) helio-
sphere one hardly could wait for high correlation between
in situ observed components of the IMF and the expected
divergence-free IMF components derived from Maxwell’s
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equations with the heliolongitudinally dependent solar wind
velocity reproducing in situ observations. In spite, in situ
measurements are an unique information which should be
considered as a basic data in any type of modelling. This
paper is a continuation of study presented inAlania et al.
(2010) tending to construct a 3-D model of the 27-day vari-
ation of the GCR intensity being able in certain scope to
explain a behavior of the GCR intensity during in arbitrary
Bartels’ rotation (during 27-days). In contrast toAlania et
al. (2010) in a present model we implement heliolongitudi-
nal asymmetry of solar wind velocity reproducing as the sum
of its first and second harmonics depending on the heliolat-
itudes and the regular part of the solar wind velocity (V0)
changing versus heliolatitudes in accord to in situ measure-
ments of the Ulysses spacecraft. As a case study we con-
sider the 27-day variation of the GCR intensity, solar wind
velocity and the IMF for the minimum epoch of solar activity
of 12 January–28 December 1995 corresponding to the Bar-
tels’rotations (BR) 2205-2217 (Fig. 1). Figure 1 shows that
there are not a clear regular changes of different parameters
related with the Sun’s rotation for the whole period of 1995.
However, there are recognizable the 27-day variation during
some BR. To show relative competency of our approach to
the construction of the 3-D model of the 27-day variation of
the GCR intensity, we consider as an example average data
of 13 BR (about one year, 1995).

2 Modeling of the 27-day variation of the GCR
intensity

For modelling of the 27-day variation of the GCR intensity
we use stationary Parker’s transport equation (Parker, 1965).
In the presented model we assume that the stationary 27-day
variation of the GCR intensity is caused by the changes of
the solar wind velocity. We assume heliolongitudinal asym-
metry of the solar wind speed corresponding to the in situ
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Fig. 1. Temporal changes of the daily solar wind velocity [OMNI,
http://omniweb.gsfc.nasa.gov/index.html], GCR intensity from the
Kiel neutron monitor and radialBx , azimuthalBy , latitudinalBz
components and magnitudeB of the IMF [OMNI] for the minimum
epoch of solar activity in the period of 12 January–28 December
1995 (A>0) corresponding to the BR 2205-2217.

measurements at the Earth orbit (Fig. 2(a)) and versus helio-
latitude as was shown by Ulysses for the minimum epoch of
solar activity (McComas et al., 2000) (Fig. 2(b)). Presented
in Fig. 2(a) are averaged by means of 13 BR, the daily data of
the solar wind speed (points) and the approximation (dotted
curve) of the first and second harmonic waves (27 and 14-day
variations) during the period of 1995. An approximation of
the solar wind speed included in the model has a form:

Vr =V0 ·Vr(ϕ) ·Vr(θ) (1)

where theVr(ϕ) = 1 + 0.15sin(ϕ + 1.18)− 0.07sin(2ϕ +

0.64) is the approximation (dotted line in Fig. 2(a)) of the
daily data of solar wind at the Earth orbit;V0 = 400 km/s,
Vr(θ) is extrapolation of solar wind velocity measured in the
ecliptic to higher latitudes as showed by Ulysses for mini-
mum conditions of solar activity (McComas et al.(2000))
approximated by formula (Fig. 2(b)):

Vr(θ)=

−0.21θ 0◦
≤ θ ≤ 40◦

3.73+3.06ArcTg(0.07−θ) 40◦<θ ≤ 75◦

1 75◦<θ ≤ 90◦

.

We assume that the heliolongitudinal asymmetry of the so-
lar wind velocity has maximum value at Earth’s orbit and
equals zero at Sun’s poles regions, i.e. that the heliolongitudi-
nal asymmetry changes versus heliolatitudes, as sinθ . There-
fore, an expression included in the model of the 27-day vari-
ation of the GCR intensity has a form:Vr(ϕ) 7→ Vr(θ,ϕ)=

1+ (0.15sin(ϕ+ 1.18)− 0.07sin(2ϕ+ 0.64))sinθ . Ascrib-
ing a decisive role in creation of the 27-day variation of the

Fig. 2. (a)Temporal changes of the daily solar wind velocity at the
Earth orbit (points) superimposed by means of 13 BR and approxi-
mation (dotted curve) by the sum of two harmonics (27 and 14 days)
waves for the period of 12 January – 28 December 1995 (Vr (ϕ) in
Eq. (1)); (b) Heliolatitudinal dependence of the radial solar wind
speed for minimum epoch of solar activity in 1995 as showed by
Ulysses for minimum conditions (V0 ·Vr (θ) in Eq. (1))

GCR intensity to the heliolongitudinal asymmetry of the so-
lar wind velocity we justify by the high correlation coeffi-
cient r (r =∼ −0.9) between the changes of the sum of the
first and the second harmonics of the 27-day variation of the
GCR intensity (Fig. 4) and the solar wind velocity (Fig. 2(a))
for average BR during the period of 12 January–28 Decem-
ber 1995. At the same an ignorance of the role of the corotat-
ing interaction regions to some extent is justified by the negli-
gible correlation coefficientr (r ∼ 0.1) between the changes
of solar wind velocity and magnitude of the IMF for con-
sidered period (Fig. 1). To solve Parker’s transport equation
(Parker, 1965) there is required theBx , By andBz compo-
nents of the IMF corresponding to the changeable solar wind
velocity. For this purpose Maxwell’s equations should be
solved for the solar wind velocity represented by Eq. (1). We
consider Maxwell’s equations:

{
∂
−→
B
∂t

= ∇ ×(
−→
V ×

−→
B )

div
−→
B = 0

(2)

whereB is the IMF strength,V -solar wind velocity, and
t-time.

2.1 Numerical solution of Maxwell’s equations

We assume that the changes of the solar wind velocity, the
GCR intensity,Bx , By andBz components of the IMF are
quasi stationary, i.e. the distribution of the GCR density is
determined by the time independent parameters. Therefore,
we accept that in Eq. (2)∂B

∂t
= 0 . Also, we accept that aver-

age value of the heliolatitudinal component of the solar wind
velocity Vθ equals zero. These assumptions lead to a sys-
tem of scalar equations for the IMF’s and solar wind speed’s
components in the corotating heliocentric spherical coordi-
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Fig. 3. Azimuthal changes of the superimposed by means of 13 BR
(a)Br and(b) Bϕ components of the IMF at the Earth orbit; obser-
vations (red squares), observations approximated by the sum of the
first and second harmonic waves (dotted lines) and values expected
from Maxwell’s equations (dashed lines) for the solar wind speed
given by Eq. (1).

nate system(r,θ,ϕ), as:

sinθVr
∂Bθ
∂θ

+sinθBθ
∂Vr
∂θ

+cosθVrBθ
−Vϕ

∂Br
∂ϕ

−Br
∂Vϕ
∂ϕ

+Vr
∂Bϕ
∂ϕ

+Bϕ
∂Vr
∂ϕ

= 0

Vϕ
∂Bθ
∂ϕ

+Bθ
∂Vϕ
∂ϕ

+rsinθVr
∂Bθ
∂r

+rsinθBθ
∂Vr
∂r

+sinθVrBθ = 0

rBr
∂Vϕ
∂r

+rVϕ
∂Br
∂r

+VϕBr −VrBϕ

−rVr
∂Bϕ
∂r

−rBϕ
∂Vr
∂r

+Bθ
∂Vϕ
∂θ

+Vϕ
∂Bθ
∂θ

= 0
∂Br
∂r

+
2
r
Br +

ctgθ
r
Bθ +

1
r
∂Bθ
∂θ

+
1

rsinθ
∂Bϕ
∂ϕ

= 0

(3)

The latitudinal componentBθ of the IMF is very weak for
the analyzed period, therefore further in this paper we con-
sider 2-D model of the IMF(Bθ = 0). These assumptions
straightforwardly lead (from first equation in Eq. (3)) to the
relationship betweenBϕ andBr as,Bϕ =Br

Vϕ
Vr

. Then last
equation in Eq. (3) with respect to the radial componentBr
of the IMF has a form:

A1
∂Br

∂r
+A2

∂Br

∂ϕ
+A3Br = 0 (4)

We take into account, as wellVθ = 0, Vϕ = −�rsinθ where
Vϕ is the corotational speed and� is the angular velocity of
the Sun. We solve Eq. (4) by the numerical method described
in detail in (Alania et al., 2009, 2010) with the boundary con-
dition near the SunBr [1,j,k] = 3770nT for 00< θ ≤ 900

and−3770 nT for 900< θ ≤ 1800 for the positive polarity
period (A > 0), wherei = 1,2,..., I ; j = 1,2,..., J ; k =

1,2,..., K are steps in radial distance, vs. heliolatitude and
heliolongitude, respectively. In considered caser1 = 0.1 AU.
The choice of these boundary conditions was stipulated by
requiring agreement of the solutions of Eq. (4) with the in situ
measurements of theBr andBϕ components of the IMF at
the Earth orbit. Presented in Fig. 3 are results of the solution
of Eq. (4) for theBr andBϕ components of the IMF. Figure 3
demonstrates that the expectedBr andBϕ components of the
IMF differ from experimental data. The expectedBr andBϕ
components preferentially contain the first harmonic of the
27-day variation, while experimental data clearly shows an

existence of the stronger second harmonic almost exceeding
the first harmonic. Solutions of the Eqs. (2) as a selfconsis-
tent system must show at least a good correspondence be-
tween the changes of the solar wind velocity and IMF. We
implemented in Eq. (4) in situ observed solar wind veloc-
ity consisting generally of the first harmonic, with the twice
greater amplitude than the second harmonic (about 15% to
7% of the total solar wind velocity). So, it is clear that ex-
pected heliolongitudinal changes ofBr andBϕ components,
reflecting a character of the changes of the implemented in
situ observed solar wind velocity, do not contain noticeable
second harmonics of theBr andBϕ components. Conse-
quently there is observed a distinction between observed and
expected IMF.

2.2 Numerical solution of Parker’s transport equation

Parker’s transport equation was solved numerically as in pa-
pers published elsewhere (see e.g.Wawrzynczak and Alania,
2008). The parallel diffusion coefficientK‖ changes ver-
sus the spatial spherical coordinates(r,θ,ϕ) and rigidity R
of GCR particles as,K‖ =K0K(r)K(R), wereK0 =

λ0v
3 ≈

1023 cm2/s, v- is the velocity of GCR particles, andλ0 - the
transport free path of GCR particles;K(r)= 1+0.5r, r is
in AU; K(R)= (R/1GV )0.5. So, the parallel diffusion co-
efficientK‖ for the GCR particles of 10 GV rigidity equals,
K‖ = 5×1023cm2s−1 at the Earth orbit. The ratiosβ and
β1 of the perpendicularK⊥ and driftKd diffusion coeffi-
cients to the parallel diffusion coefficientK‖ of the GCR
particles are given in standard formβ =

K⊥

K‖
=

1
1+ω2τ2 and

β1 =
Kd
K‖

=
ωτ

1+ω2τ2 whereωτ = 300BλcR−1, c - speed of
light, B - the strength of the IMF. The billiard ball diffusion
is not generally the best approximation (Parhi et al., 2004;
Shalchi, 2009) but it works well at high rigidities to which
neutron monitor and muon telescopes are are responsive,
R>10−15 GV (Jokipii, 1971; Shalchi, 2009). We included
in Parker’s transport equation theBr andBϕ components

and the magnitudeB =

√
B2
r +B2

ϕ of the IMF obtained from

the numerical solution of Eq. (4) with a variable solar wind
speed (Eq. (1)). Implementation of the heliospheric mag-
netic field obtained from the numerical solution of Eq. (4)
in Parker’s transport equation is done through the spiral an-
gleψ = arctan(−Bϕ

Br
) in anisotropic diffusion tensor of GCR

particles and ratiosβ andβ1. The kinematical model of the
IMF with variable solar wind speed has some limitations, es-
pecially it could be applied until some radius, while at large
radii the fast wind would overtake the previously emitted
slower one. So, we assume that an interaction between slow
and fast streams of the solar wind velocity takes place not
earlier than∼ 8 AU. We justify an ignorance of corotating
interaction regions by the absence of a noticeable Forbush
decreases, and negligible correlation between changes of so-
lar wind velocity and the magnitude of the IMF (correlation

www.astrophys-space-sci-trans.net/7/351/2011/ Astrophys. Space Sci. Trans., 7, 351–354, 2011



354 A. Wawrzynczak et al.: Model of the 27-day variation of the GCR intensity

-1.1

-0.85

-0.6

-0.35

-0.1

 0.15

 0.4

 0.65

 0.9

 3  6  9  12  15  18  21  24  27
-1.1

-0.85

-0.6

-0.35

-0.1

 0.15

 0.4

 0.65

 0.9

G
C

R
 i
n
te

n
s
it
y
 K

ie
l 
[%

]

E
x
p
e
c
te

d
 G

C
R

 i
n
te

n
s
it
y
 [
%

]

days

experiment
experiment I+II harm

model

Fig. 4. Heliolongitudinal changes of the expected GCR intensity for
effective rigidity 15 GV at the Earth orbit during one solar rotation
period for the solar wind velocity assumed as in Eq. (1) (dashed
line), temporal changes of the averaged GCR intensity by Kiel neu-
tron monitor by means of 13 BR for the period of 12 January–28 De-
cember 1995 (points) and the approximation by the sum of the first
and second harmonic waves of the observed GCR intensity (dotted
line).

coefficient equals∼ 0.1) during the analyzed period. Thus,
to exclude an intersection of the IMF lines the heliolongitu-
dinal asymmetry of the solar wind speed takes place only up
to the distance of∼ 8 AU and thenV = 400 km/s and stan-
dard Parker’s field is used throughout the heliosphere. The
solution of the model of the 27-day variation of the GCR
intensity corresponding to theA> 0 period (1995) are pre-
sented in Fig. 4 (dashed line). Figure 4 also presents aver-
age data of Kiel neutron monitor for 13 BR (2205−2217).
We recalculated an experimental data to free space (beyond
Earth’s atmosphere and magnetosphere) for the power law
type rigidity R spectrumδD(R)/D(R)∝R−γ for γ = 1.0
(acceptable for the 27-day variations in the minimum epoch
of solar activity,Gil and Alania, 2010) taking into account
coupling coefficients and rigidity dependence of the ampli-
tudes of the 27-day variation of the GCR intensity. Figure 4
shows that the range of the changes of the sum of the first and
second harmonics of the 27-day variation of the GCR inten-
sity for Kiel neutron monitor is little less than expected from
the modelling. We must underline that generally there is not
any problem to adjust modelling results to the experimen-
tal data by alternating values of free parameters. We believe
that the modelling results for 15 GV rigidity particles of GCR
can be successfully compared with Kiel neutron monitor data
corresponding to the effective energy of∼ 10−15 GeV.

3 Discussion and Conclusions

We constructed a 3-D model of the 27-day variation of the
GCR intensity with implementing in the average solar wind
velocity for the BR (2205−2217) in period of 12 January–
28 December of 1995 (A> 0), possessing properties as fol-
lows: (a) the regular partV0 of the solar wind velocity

changes versus heliolatitudes in accord to in situ measure-
ments of the Ulysses spacecraft; (b) the heliolongitudinal
asymmetry of solar wind velocity reproducing as the sum of
the first and second harmonics of the 27-day variation de-
pends on the heliolatitudes. We implement in a modelBr
andBϕ components of the IMF derived from the Maxwell’s
equations corresponding to the changeable solar wind veloc-
ity (Eq. (1)). The average value of theBθ component is neg-
ligible for the considered period. We assume that an interac-
tion between slow and fast streams of the solar wind velocity
takes place not earlier than∼ 8 AU. We justify an ignorance
of corotating interaction regions by the absence of a notice-
able Forbush decreases, and negligible correlation between
changes of solar wind velocity and the magnitude of the IMF
(correlation coefficient equals∼ 0.1) during the analyzed pe-
riod. We show that, though, the range of changes of the sum
of the first and second harmonics of the 27-day variation of
the GCR intensity for Kiel neutron monitor is little less than
expected from the modelling, however, they are comparable.
We believe that a comparison of the modelling results for
15 GV rigidity particles of GCR can be effectively compared
with Kiel neutron monitor data corresponding to the effective
energy of∼ 10−15 GeV.
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