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recorded at 500 m distance from shower core with the
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Abstract. Previous EAS investigations have shown that for operated by an international collaboration. The obtained
a fixed primary energy the charged particle density becomegrimary energy spectrum is presented along with the result
independent of the primary mass at certain (fixed) distancesf another reconstruction technique presently employed at
from the shower axis. This feature can be used as an estimacASCADE-Grande.

tor for the primary energy. We present results on the recon-
struction of the primary energy spectrum of cosmic rays from
the experimentally recorded S(500) observable (the density
of charged particles at a distance of 500 m to the shower cord
z;ggz%g?grlgn%eplggfegggé:lr;;t[]ries Eﬁé%?_éﬁ;nngdteh&e\_/ious EA_S investigatio_ns have shown that t_he charged
experiment is hosted by the Karlsruhe Institute for Technol—part'de density becomes independent of the primary mass

ogy - Campus North, Karlsruhe, Germany, 110 ma.s.l. andft large but fixed distances from the shower core and that it
can be used as an estimator for the primary endifia$ et

al., 1971). A method was derived to reconstruct the primary
energy spectrum from the particular value of the charged par-

Correspondence ta3. Toma ticle density, observed at such specific radial distances. The
m (gabriel.toma@nipne.ro) technique has been used by different detector arrays in order
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Fig. 1. Simulations show that, for the case of the KASCADE- Fig. 3'_ Integral 3(500_) SPec”a? the_horizqntal line is a constant

Grande experimental layout, the particle density becomes indeperf-mens"t_y cutatan _arbltrarlly chosen |ntens_|ty; by assuming an ex-

dent of the primary mass at around 500 m distance from the showePOnential attenuation pattern the_zattenuatwn length of S(500) was
core; this plot shows averaged simulated lateral distributions for dif_evaluated t0.(500 = 754+£8gcnT <.

ferent primary types with equal energy.

— 1.4 air showers, with QGSJETII as model for high energy inter-
§ ) actions Kalmykov et al, 1997 Ostapchenka20064ab).
X 1.2} The reconstruction begins with recording the energy de-
g et Y N 3 posits of particles in the KASCADE-Grande detector stations
2 ._;; i and the associated temporal information (arrival times of par-
E 08¢} . ticles). Using appropriate Lateral Energy Correction Func-
0.6 2 = 0°<0<15° tions (LECF), the energy deposits are converted into particle
e 0°<0<30° densities. The LECF functions are dependent on the shower
0.4f .t + 15%<9<30° zenith angle GEANT, 1993 Toma et al, 2006 and on the
0.2¢ _::‘ position of the station around the shower core (i.e. the LECF
it . . . . are dependent on the angle of incidence of particles in detec-
0 6 6.5 7 7.5 8 8.5 9 tors). For every event, the obtained lateral density distribu-
log, [E,/GeV] tion is approximated by a Linsleyipsley et al, 1962 Lat-

eral Density Function (LDF) in order to evaluate the particle
Fig. 2. S(500) reconstruction efficiency for different zenith angular density at the radial range of interest, 500 m.
ranges and for the entire shower sample (all quality cuts applied); The described reconstruction is performed independently
the reconstruction efficiency exceeds 95% afipgo/GeV]>7.5. from the standard reconstruction applied at KASCADE-
Grande - based on the /NN, approach Bertaina et al.
2009.
to reconstruct the primary energy spectrum of the cosmic ra-
diation (Dai et al, 1998 Edge et al. 1973 Nagano et a.
1984 Roth et al, 2003. In the case of the KASCADE-
Grande array, detailed simulationBrancus et a). 2005

Rebel et al.2009 have shown that the particular distance for Historically, the KASCADE-Grande detector arraygungs
which this effect takes place is about 500 m (see Figmid et al, 2003 is an extension of a smaller array (the KAS-
4), hence the notation S(500) for the charged particle denCADE array, operated since 1996). KASCADE was de-
sity at 500 m distance from the shower core. The distancesigned to record air showers initiated by primaries with ener-
is measured in a plane normal to the shower axis and congies in the 18*— 107 eV range (including the knee range).
taining the shower core. The data recorded in the detectoThe extension of the original KASCADE array was guided
plane is projected on the normal plane taking into accountyy the intention to extend the energy range for efficient EAS
the attenuation effects characteristic to inclined events. detection to 18 — 10%eV (Fig. 2). This energy range

The study has been performed for both simulated (b)ig. provides various interesting aspects: the expected transition
and experimental (Fig) events, using identical reconstruc- from galactic to extragalactic cosmic rays and, in particular
tion proceduresSima et al.2004. CORSIKA Monte Carlo  the question whether there exists a further “knee” in the en-
EAS simulation tool Heck et al, 1998 is used to simulate ergy spectrum.

2 KASCADE-Grande
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Fig. 5. Comparison between the true (known) energy spectrum of
Fig. 4. The dependence of S(500) on the primary endfgyor two primaries (five masses in fairly equal proportions) used. in the sim-
different primaries (showers in fairly equal proportions for the two ulated shower sample and the result of the reconstructions: the de-
masses); the box-errors are the errors on the spread; the errors @gribed reconstruction based on S(500) and the result of the standard
the mean are represented with bars and are dot-sized; straight lindéASCADE-Grande approach based on g, — N, approach.
represent power law fits.

the true one) is acting as a source of systematic uncertainty
(<1% contribution), the S(500)E calibration 1% con-

For a given event sample, an EAS observable could have difffiution), the CIC method<1% contribution), the statisti-
ferent values for events induced by identical primaries but€@! fluctuations in the simulated shower sample (7%) and the
arriving from different zenith angles (due to EAS attenuation choise of a cert_aln referer_me angle at v_vh|c_h to perform the
through the atmosphere). This is also the case for the S(500)>(°00) attenuation correction (7% contribution).

One has to correct for this effect before performing an anal- The energy resolution has also been evaluated from sim-
ysis simultaneously on all EAS events. This is achieved byulations by calculating the difference between the true and
applying the Constant Intensity Cut (CIC) method (RBY. the reconstructed primary energy (applying CIC to the sim-
(Nagano et a).1984. All reconstructed S(500) values are ulated data) and was found to be 22% fay= 10'eV (for
corrected for attenuation by bringing them to the value theyall primaries) with a slight decrease with increasing energy.
would have at a chosen reference angle. For the present study

the reference angle is considered to b&, Zlnce the zenith

angular distribution for the recorded EAS sample peaks at

this value. The CIC correction is derived from recorded ex-5 The correction based on a response matrix

perimental data and is independent from simulated studies.

3 The constant intensity cut method

Fluctuations may lead to the mis-reconstruction of an event
4 Conversion to energy (by under- or over-estimation) and when representing the en-

ergy flux as a histogram that particular event may be stored
For the experimental EAS sample, the total time of acqui-in the wrong (neighboring) energy bin. Thus in every energy
sition was 1173 days for a 560600 n? fiducial area. The bin of our spectrum we will have the data correctly belong-
same quality cuts were used for both simulated and experilnd to that bin, but also data that was migrating from neigh-
mental events. Only those events are accepted for which thBoring bins. As the energy spectrum is very steep (spectral
zenith angle is below 30 the reconstructed shower core is index y ~ —3) we expect that for a given energy bin, the
positioned inside the detector array and not too close to thénis-reconstructed events falling into it will be coming pre-
border, and the event is triggered by more than 24 Grandé&lominantly from lower energy bins thus affecting the spec-
stations. A good quality of the fit to the Linsley distribution tral index of the reconstructed spectrum.
is a further important criterion. It is possible to account for the effect of fluctuations by

A calibration of the primary energ¥o with S(500) was calculating (from simulations) how many events migrate.

derived from simulations (see Fig). For the systematic Therefore a correction procedure is derived and applied to
contribution to the total error, several sources of system-the experimental data. This is done with the help of a re-
atic uncertainties have been identified: the spectral indexsponse matrix. The spectrum presented in €igcludes the
of the simulated shower sample (which is different from result of this correction.
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