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Abstract. Spacecraft missions such as Wind and ACE canSpace Agency to study the Earth’'s magnetosphere over the
be used to determine magnetic correlation functions in thecourse of an entire solar cycle. Simultaneous magnetic field
solar wind. From such data sets one can obtain spatial andata from Wind, ACE, and Cluster spacecraft can be used to
temporal correlations of magnetic fields. Such correlationsdetermine the magnetic correlations near Earth’s orbit (e.g.
are fundamental in the theory of magnetic turbulence and ardatthaeus et al.2005 Dasso et aJ.2007). Matthaeus et
important to describe the statistics of magnetic field lines andal. (2010 obtained temporal correlations of magnetic fluc-
the propagation of energetic particles such as cosmic rays. Ituations in the interplanetary field by using Wind and ACE.
the present article we compare analytical forms of correlationFrom such observations detailed information about the spa-
functions with measurements performed in the solar systemtial and temporal decorrelation of turbulence can be deduced.
We obtain new values for the correlations length scales and The evolution of the interplanetary magnetic field spa-
we test our understanding of the turbulence dynamics. tial structure has been investigated in the recent years (see
Dasso et a).2005 Ruiz et al, 2011). It was shown that
the nature of the turbulence anisotropy differs in the fast
1 Introduction (Vsw > 500km/s) and slow solar windvgy < 400 km/s).

In particular, the fast streams are more dominated by fluctua-
The understanding of turbulence is fundamental in plasmaions with wavevectors quasi-parallel to the local field. Such
and astrophysics. In order to achieve a complete theoretfluctuations are usually called slab modes. Slow streams,
ical description of turbulence, one has to know the spatialwhich appear to be more fully evolved turbulence, are more
and temporal structures. However, those are difficult to ac-dominated by quasi-perpendicular fluctuation wavevectors.
cess experimentally. The understanding of turbulent plasma$uch fluctuations are usually called two-dimensional modes.

is important for describing the propagation and acceleration There is also some theoretical work available which allows
of energetic particles such as cosmic rays. The spatial corto compute the correlation functions analytically. Such cal-
relation functions and correlations lengths have a direct in-culations are based on standard models for interplanetary tur-
fluence on the charged particle diffusion coefficients alongbulence (e.gMatthaeus et al2007 Shalchi and Weinhorst
and across the mean magnetic field (8lgalchj 2009. The 2009 in the wavevector or Fourier space. It is the purpose of
temporal or Eulerian correlations control the parallel diffu- the present paper to compare such analytical forms directly
sion coefficient of low-energy particles (e.Bieber et al.  with the measurements performed in the past. This will help
1994 Shalchi et al.2006. Temporal and spatial correlation to test our understanding of interplanetary turbulence and to

functions are also important in the theory of random walking obtain turbulence parameters such as the correlation lengths
magnetic field lines (e.ghalchi et al.2007, 2012. and times.

In recent years more and more experiments have been per-
formed to study magnetic fields in the interplanetary space.
The Advanced Composition Explorer (ACE), for instance, is
a space exploration mission to study the solar wind and ener2  Spatial and temporal structure of turbulence
getic particles such as galactic cosmic rays. Another exam-
ple is the WIND satellite which was built to study the solar Here we discuss some fundamental quantities which are used
wind plasma. Cluster Il is a space mission of the Europearto describe magnetic turbulence. More details can be found
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36 A. Shalchi: Correlation functions

in the literature (e.gBatchelor 197Q Matthaeus and Smith  Here we have used the Dirac delta functign) and the one-
1981, Matthaeus and Goldsteih982 Shalchj 2009. dimensional spectrum of the slab modséé"‘b(k”) which is
discussed below. In this model the wave vectors are aligned
parallel to the mean fieldk(| Bo).

Another model with reduced dimensionality is the two-
A key function in turbulence theory is the two-point-two- dimensional (2D) model wheré(k. k1) has the form
time correlation tensor. For homogeneous turbulence its 5(ky)
components are AZP (ke ky ) = gZD(kl)k—H

i

2.1 The turbulence correlation function

(7)
Ry (x,t) ={8B;(x,t)8 B* (0,0)). 1 . . .
(1) = (8B1(x,1)3 B}, (0,0)) (1) with the spectrum of the two-dimensional moge® (k).

The brackets...) used here denote the ensemble averageln this model the wave vectors are aligned perpendicular
It is convenient to introduce the correlation tensor in theto the mean field K L Bo) and are therefore in a two-

wavevector space. By using the Fourier representation dimensional plane.
In reality the turbulent fields can depend on all three coor-
5B (x.1) =/d3k 5B (k,1)e** ) dinates of space. A more realistic, quasi three-(_JIimensionaI
model for the turbulence is the slab/2D composite (or two-

component) model. In the latter model we assume a superpo-

sition of slab and two-dimensional fluctuatior§™ " (k) =

Ruy (x.1) =/d3k/d3k,<831(k,t)33:,; (k”o)>eik~x. @)  Po2%k)+ PZP (k). In the composite model the total strength
of the fluctuations i$B? = § B3,,+8B3,. The composite

slab
For homogeneous turbulence we have Model is often used to approximate solar wind turbulence. It

.1 B T _ was demonstrated by several authors (Bigber et al. 1994
<8Bl(_k’t)83’" k ] O)> = Pin(k, D3k — k) with the_ cor 1996 that the slab fraction should be 20% and the fraction
relation tensor in thé—spaceP,, (k.1). By assuming the ¢ ihe two-dimensional modes should be 80%. Therefore the
same temporal behavior of all tensor components, we havg,q_gimensional modes should be dominant in the solar wind
Piy (k,t) = Py (k) T'(k,t) with the dynamical correlation 4 1 AU heliocentric distance.

functionT"(k, 7). Equation §) becomes then More turbulence models can be found in the literature.

we find

_ RecentlyWeinhorst and Shalch2010 have extended the
Rip(x,1) = /d?’k P (k)T (k1) (4)  slab/2D model to allow a spread of the wave vectors. We
expect to find different turbulence properties at different lo-
with the magnetostatic tenséy,, (k) = ((SBI (k)sB (k)). cations. E.g. solar wind turbulence should be different from
the interstellar turbulence due to the different driving pro-
2.2 The two-component turbulence model cesses. Some discussions of the different behavior of tur-

bulence in the different physical systems was presented re-
In this paragraph we discuss the static tensn (k).  cently (e.gHunana and Zank01Q Shalchi et al.2010. In
Matthaeus and Smith (1981) have shown that for axi-the present article we focus on interplanetary turbulence at
symmetric turbulence the correlation tensor has the form  short heliocentric distances. In this case the model of slab
Kk and two-dimensional modes should provide a good approxi-
P (k) =Aky, k1) [S,m — 7} I,bm=x,y (5) mation and is in agreement with the observed Maltese cross
structure in the solar wind (sé¢atthaeus et al199Q Wein-
and P, = P, =0. In our case the symmetry-axis has to be horst and Shalch2010.
identified with the axis of the uniform mean magnetic ffeld
Bo = Boe;. Furthermore, we neglect magnetic helicity and 2.3 The turbulence spectra
we assume that the parallel component of the turbulent field
is zero or negligible smalb@; =~ 0). A simple model forthe = The wave spectrum describes the wave number dependence
function A(ky, k1) is the so-called slab model in which we of A(kj,k.). In the slab model the spectrum is described by
assume the form the functiongs'ab(ku) and in the two-dimensional model by
S(ky) ¢2P (k). For the two spectra we use the models proposed by

ASO(k k)= gSIab(kH)T (6)  Shalchi and Weinhor¢2009

D(s,gslab)
1in most of the physical scenariaBy is not a real constant and gSIab(kH) = %SBéadslab

we don't have a uniform field. However, it can be locally defined kil dsiab
from an average over spatial scales of the order of the so-called (k) Isiab)
integral scale (seMlatthaeus et gl2012. [1+ (knlslab)z] (s+gslab) /2

8
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and and for two dimensional modes
2D(s,q2p)
2 2
g?P(ky) = ————0B3plap R?P(p) = 4D(s,q2p)8 B3,
q o0 492D
(k1 lop)2p . 9) X / dx = T Jo(£). (15)
[14 (k1 l2p)2] O H20Y 0 [1+x2] l2p

Here we have used the turbulence strgngth of the slab modgsere we have used the integral transformations k| siap
8B,y and the 2D mode8BS,, respectively. The parame- andy — k1, respectively. In Sect. 3.1 we compare these
tersigiap andlyp are the two bendover scales denoting theformulas with solar wind data.

turnover from the energy range to the inertial range of the

spectrum. In the two model spectra defined above we a||OV\Q_6 An advanced dynamical turbulence model

different values of the energy range spectral indexggsand

qzp. For the inertial range spectral indexve assume the In order to compute temporal correlations one has to spec-
same values. Furthermore, we used the normalization funcl-fy the dynamical correlation functiofi (k, 7). An advanced
tion D(s,q) ={T'l(s +¢)/21}/{2T'[(s —D/2IT[(q +1)/2l}  mogel for the latter function has been proposedStmalchi
where we have used the Gamma functidn). et al.(2006. This model is called the Nonlinear Anisotropic
Dynamical Turbulence (NADT) model and is based on an
improved understanding of solar wind turbulence (Slge-

The correlation function for dynamical turbulence is given by Palin, 1983 Matthaeus et al.1990 Tu and Marsch1993
the latter formulaShalchi(2008t) has shown that the com- &l 2004 Oughton et a].2008. To avoid lengthy discus-

where this model has been introduced. An important feature

RS0z 1) = 8n/°°dk“ %130k ) cosky ) TS0k, 1) (10) of this model is that slab modes and two-dimensional modes
0 are assumed to be coupled, i.e., the slab correlation function
for slab turbulence and sk, 1) can depend on properties of the two-dimensional
0o modes and the dynamical correlation functith? (k. ,¢) can
R?P(p,1) = an dki 2P (k1) Jotkip)T?P (k. ,r) (11)  depend on the properties of the slab modes.
0 As described irshalchi et al(2006 andShalchi(20080 a
for two-dimensional turbulence. Here we have used thereasonable approximation for the two dynamical correlation
Bessel function/o(x). The two correlations depend on time functions should be given by
t, the parallel distance, and the perpendicular distange=

2.4 Correlation functions for dynamical turbulence

Vx2+y2. To evaluate these equations we have to specify thasa8, , 1) = cogwt)e # " (16)
dynamical correlation functionES'@(k;,r) and 2P (k1)

which is done in Sect. 2.6. and

2.5 Spatial correlation functions 20k, 1) =e 7 kDI, (17)

Spatial correlations can be calculated by setting O in

Egs. (L0) and (L1). We find for slab modes Here we have used

00 _ 1 forkilop <1
RY™(2) = 877/[; dky g%k cosky ) (12)  vk)=p { (k1lap)?/® for kylop >1 (18)

and for two dimensional modes which can be approximated by

o
RE(0) =2 [ k¢ () dolke ). (19) . o
0 y ()~ BQtkilap)?P~ B[ 1+ klop)?] (19)
Those functions have been calculated analyticallghalchi

(20083 for the special casgsiab=g2p =0. Here we dis-  for simplicity. Furthermore, we have employed
cuss spatial correlations for the more general spectra defined

above. In this case Eql®) becomes for slab modes f=2 va 8B2p (20)
RS®(z) = 4D(s,qslan) Bap fp Bo
o /Oodx xfstab cos(x—z> (14)  For the plasma wave dispersion relation we assume parallel
0 [1-x2] ¢ Has)/2 Islab propagating shear Alsn waves witho = vk in Eq. (L6).
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Fig. 1. Spatial correlations for slab modes agglap=0. We Fig. 2. Spatial correlations for two-dimensional modes for different

compare theoretical results faga,= 0.3-10°km (dotted line),  values ofgop. We compare theoretical results fgsp, = 0 with

Isjab=0.6-10° km (solid line), andsjap=1.0-10° km (dashed line)  I5p, = 0.8-10° km (dotted line)gop = 1.5 with I = 1.7-10° km

with the observations (black dot) froBasso et al(2007). (solid line), andgyp = 5.0 with Iop = 3.0- 10 km (dashed line)
with the observations (black dots) frobasso et al(2007).

Table 1. The results for the two-dimensional bendover séajs
obtained for different values of the energy range spectral ipggx and
The results were obtained by comparing theoretical results with the

observations presentedasso et al(2007). 2D\ s [ x492p
EL (t) - 4D(s1 q2D)832D 0 dx —(1+x2)(5+112D)/2
Spectral indexjpp  Best fitlop inkm  Best fitlpp in AU % 5@ 3ust/lop 23)
0.0 0.8-10° km 0.005 AU , _ _
15 17.100 km 0011 AU Here we have used again the integral transformatioas
5.0 3.0.100 km 0.020 AU kylsiap and x =k Iop, respectively. Furthermore we have

used the parametér= /25 Bop/Bo. In Sect. 3.2 we evalu-
ate Eqgs. 22) and £3) numerically and compare our findings

2.7 Temporal correlation functions with spacecraft data.

In the following we calculate the (combined) single-point-
two-time correlation function defined b, (1) := R, (x =
0,1). The latter function is also known as Eulerian correlation 3.1 Spatial correlation functions
function. We obtain the Eulerian correlations from Eq€) (

3 Comparison with spacecraft data

and (L1) by settingz =0 andp =0 therein For slab modes we calculate spatial correlations fers/3
0o and gslap= 0 and compare the result with the observations
ES®() = 871/ dky g8k )Tk, 1) obtained byDasso et al(2007. These observations were
o obtained for the fast solar wiRd Vsw > 470 km/s). Dasso
EiD(t) - 2”_/ dky g2P(k )T2P (k\ ,1). (21) et aI.(2007).(see Fig. 2 for the case @f their paper)_ fqund
0 for the spatial correlations along the mean magnetic field that

_R| (z=380000km ~ 0.4 AU. In Fig. 1 we fit Eq. (L2) to the
observations. We obtain the best fit {ggp~ 0.6- 10 km =
0.004 AUP. We like to emphasize thdgap is the slab ben-
dover scale and not the correlation length. Furthermore, this
fitis only correct if we indeed havgap= 0.

Such correlation functions were already calculated analyti
cally in Shalchi(2008h for a constant spectrum in the energy
range §siab= ¢g2p = 0 in our notation). It is straightforward
to extend those results for the spectra defined in Byar(d
(9). In this case and for the NADT model the following ana-

lytical forms can be found 2t was shown (for instance iDasso et a).2005 that the struc-
ture of the correlation function can differ for fast and slow solar

S x4slab
ES?(t) = 4D(s,qslan) BIap / dx wind.
0 (L4 x#)rsia SHere we used Astronomical Units (AU) which is approximately
x COxvat/lsiap)e VAl 12p (22)  1AU~150-10°km.
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Fig. 3. The two-dimensional Eulerian correlation function as a Fig. 4. The two-dimensional Eulerian correlation function as a
function of the time. The observations (represented by the dotsfunction of the time. The observations (represented by the dots)
are fromMatthaeus et al(2010 and the theoretical results were are fromMatthaeus et al(2010 and the theoretical results were
computed by using Eq.2@8). For the three theoretical results computed by using Eq28). For the three theoretical results we
we assumed thatB,p, = +/0.8Bg, g2p = 1.5, vy = 12km/s, and  assumed thaiB,p = +/0.8Bg, lop = 0.7-10°km, vy = 12kmis,

s =5/3. We used different values for the bendover scale of theands =5/3. We used different values for the energy range spectral
two-dimensional modes, namely, = 1.0- 108 km (dotted line), index, namelyy>p = 0.0 (dotted line),gop = 1.5 (solid line), and

Iop = 0.8-108 km (dashed line), anty, = 0.7- 108 km (sold line). g2p =5.0 (dashed line).

In Fig. 2 we determine the two-dimensional bendover
scalelzp. In this case it is not clear what the energy range
spectral index is (e.dVlatthaeus et a12007). Thus, we have

callculated Spit'al cocl)'rfFeIatlons for=5/3 and for dllffeéent correlation functions based on the workStialchi(2008ab)
values oigzp. For a different energy range spectral index we with spacecraft measurements performed in the solar sys-

get the best agreement with the observations for a diﬁeren{em for the fast solar wind by using the Advanced Compo-
bendover scale. Therefore, what we ggtlfgy’ depends on o Explorer and the Wind spacecraft (el@asso et a.
what we assume fafap. _In Tablel the_dn‘ferent parameter 2007 Matthaeus et 812010. Based on this comparison we
gouples arhe listed. dFOl; mstanpe Wte f'id the %g'\it agreement, ;nd values for the bendover scales of the slab modes and
etwee(r;_t eo%f{‘AS _fservatlons @ﬁlNS 1.7-10°km cor- the two-dimensional modes, respectively. For the slab ben-
responding to Ifwe setgzp = 1.5. dover scale we find the best agreementfgp~ 0.6- 10f km
=0.004 AU. For the two-dimensional modes our findings for
the bendover scale depends on the assumption of the energy

Here we compare temporal or Eulerian correlations. As arfange spectral indeypp, - see Tablel of the present pa-
approximation we assume pure two-dimensional turbutence P&’ F0f¢12006= 0.0 for instance we get the best fit by setting
and sett = 1.265. Furthermore we use again=5/3 for /20 ~0.8-10°km =0.005AU. Forgp = 1.5, however, we

the inertial range spectral index and for the &ffvspeed we Obtainiop ~ 1.7 10° km =0.011 AU. It seems that the two
assuma, = 12 km/s. In Figs3 and4 we have shown a com- bendover scales are in the same order of magnitude. The val-

parison between the observationdatthaeus et a1.2010 ues obtained in the present paper are close to those obtained
and the results obtained by evaluating E28)(numerically. Py Dasso etal(2007. _

We have computed the temporal correlation functions for dif- e have also compared analytical results for the tempo-
ferent values of the two-dimensional bendover séajeand ral or Eulerian correlation function with the observations ob-
the energy range spectral indg . It should be emphasized tained byMatthaeus et ak2010. In this case we have ap-
that the parametdsp is the bendover scale used in Eg) ( Proximated the turbulence by using two-dimensional modes
and not the correlation length. As shown in Figand4we  Which are dominant in the solar windseeBieber et al,

can reproduce the measured temporal correlations. There-999- This comparison is shown in Figgand4. As shown

fore, we conclude that the observations are consistent with€ two-dimensional bendover scdlg as well as the en-

our understanding of the turbulence dynamics. ergy range spectral indeyp have an influence on the Eu-
lerian correlations. Fogop = 1.5 for instance, we find the

4Here we assume pure two-dimensional turbulence as approxibest agreement if the bendover scaldais ~ 0.7 - 10°km
mation because two-dimensional modes are dominant in the solar
wind (Bieber et al.1996). In the fast solar wind, however, there is
a significant slab contribution.

4 Conclusions

In the present paper we have compared analytical forms for

3.2 Temporal correlation functions

5There are indications that there is a significant slab contribution
in the fast solar wind.
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=0.004 AU. For other values af>p we would find the best  Matthaeus, W. H., Bieber, J. W., Ruffolo, D., Chuychai, P., and
agreement for a different bendover scale. Obviously the the- Minnie, J.: Spectral Properties and Length Scales of Two-
oretical correlation function for these cases agrees very well dimensional Magnetic Field Models, Astrophys. J., 667, 956,
with the data points. Our results are summarized in Table 2007 .

In the current paper we have compared spatial and temMatthaeus, W. H., Dasso, S., Weygand, J. M., Kivelson, M. G.,
poral correlation functions obtained analytically with solar ~and Osman, K. T.: Eulerian Decorrelation of Fluctuations in the
wind observations. By fitting turbulence parameters we ob- Interplanetary Magnetic Field, Astrophys. J. Letters, 721, L10,
tained a good agreement between theory and observations. 2010. o )

We have shown that critical parameters are the bendoveMatthaeus, W. H., Servidio, S., Dmitruk, P., Carbone, V.,
scaleslsiap andlzp as well as the energy range spectral in-  ©ughton, S., Wan, M., and Osman, K. T.: Local Anisotropy,
dex of the two-dimensional modes,. The results of the Higher Order Statistics, and Turbulence Spectra, Astrophys. J.,
current paper show that the observations are consistent with 720, 103, 2012.

our present understanding of solar wind turbulence which isPughton, S., Priest, E., and Matthaeus, W. H.: The influence of
based on the two-component model. a mean magnetic field on three-dimensional magnetohydrody-

namic turbulence, J. Fluid Mech., 280, 95, 1994.
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