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Abstract. Electromagnetic cascades in matter, photon fields,
and magnetic fields are solved by a standard numerical
method, integrating the diffusion equations of respective cas-
cade processes numerically. Our results and those of Aharo-
nian and Plyasheshnikov agree very well for cascades in mat-
ter and magnetic fields, though they show some slight dis-
crepancies for cascades in photon fields of high incident ener-
gies. Transport properties of electron and photon spectra are
also investigated by solving differential-difference equations
for cascades with simplified cross-sections, and the spec-
tra under the electron cooldown process are well explained
quantitatively.

1 Introduction

Investigations of electron-photon cascades developing in
matter, photon fields, and magnetic fields are very impor-
tant for astrophysical studies in the high-energy gamma-ray
astronomy, asAharonian and Plyasheshnikov(2003) pointed
out strongly in results derived from the adjoint method by
Plyasheshnikov et al.(1979). Here we introduce another ap-
proach to solve cascades developing in those environments
for mutual confirmations among results and solving meth-
ods, in order to improve the accuracies and simplifications
of computations, and for future applications in other or more
complicated environments.

The diffusion equation for cascades in matter is reviewed
in Rossi and Greisen(1941), and that in magnetic fields was
described inAkhiezer et al.(1994). In this report, we pro-
pose the diffusion equation of cascades in photon fields. It is
difficult to solve integro-differential equations for cascades
by the traditional analytical method shown in, for example,
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Rossi and Greisen, when cross-sections are inhomogeneous
with primary and secondary energies. So we apply standard
numerical methods to integrate the above cascade equations.

Our results for transition curves of shower electrons devel-
oping in matter, photon fields, and magnetic fields are com-
pared with those derived byAharonian and Plyasheshnikov
and byNishimura(1967). We also indicate changes in the
energy spectra of cascade electrons and photons penetrating
photon fields, and attempt to explain the transport property
of the energy spectra quantitatively by solving differential-
difference equations with simplified cross-sections.

2 Cascades developing in matter, photon fields, and
magnetic fields

2.1 Diffusion equation for the cascades in photon fields

Letπ(κ,t)dκ andγ (λ,t)dλ be the differential energy spectra
of shower electrons and photons with

κ ≡ω0εe and λ≡ω0εγ , (1)

whereεe, εγ , andω0 denote the energies of the shower elec-
tron, shower photon, and background photon in units ofmc2,
respectively, after penetrating mono-energetic and isotropic
photon fields of deptht in units of

X
(G)
0 =

[
4πn(G)0 r2

0

]−1
κ0, (2)

defined inAharonian and Plyasheshnikov(2003), whereκ0
denotesκ or λ of the incident particle.

Then the diffusion equation for the electron-photon cas-
cades in the photon fields can be described as

∂π(κ,t)

κ0∂t
=−

π(κ)

κ

∫ 1

0
φ(κ,v)dv+

∫ κ0

κ

φ(κ ′,1−
κ

κ ′
)
π(κ ′)

κ ′

dκ ′

κ ′

+2
∫ κ0

κ

ψ(λ′,
κ

λ′
)
γ (λ′)

λ′

dλ′

λ′
, (3)
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Fig. 1. The normalized cross-sections for the inverse Compton scat-

tering
dNIC(εγ )

dεγ
/

3σT
4κεe

, whereκ = .1,.2,.5,···,100, from bottom to

top (left), and the photon-photon pair productiondNPP(εe)
dεe

/
3σT
4λεγ

,

whereλ= 1.5,3,5,10,30,100, from bottom to top (right).

∂γ (λ,t)

κ0∂t
=

∫ κ0

λ

φ(κ ′,
λ

κ ′
)
π(κ ′)

κ ′

dκ ′

κ ′
−
γ (λ)

λ∫ 1

0
ψ(λ,u)du, (4)

whereu≡ εe/εγ and v ≡ εγ /εe denote fractional energies

and dNIC(εγ )

dεγ
≡

3σT
2κεe

φ(κ,v) and dNPP(εe)
dεe

≡
3σT
2λεγ

ψ(λ,u) de-
note the cross-sections indicated in Fig.1 for the inverse
Compton scattering and the photon-photon pair production,
respectively, as described inAharonian(2004) andZdziarski
(1988), with σT of the Thomson cross-section. They are

φ(κ,v) =
1

4

(
1−v+

1

1−v

)
+

v

16κ(1−v)

(
3+v−

1

1−v
+4ln

v

4κ(1−v)

)
−

v2

16κ2(1−v)2
with v <1/

(
1+

1

4κ

)
, (5)

ψ(λ,u) =
1

4

(
1−u

u
+

u

1−u

)
−

1

16λu(1−u)

(
4+

1−u

u
+

u

1−u
−4ln{4λu(1−u)}

)
+

1

16λ2u2(1−u)2
with

1

2

(
1−

√
1−

1

λ

)
<u<

1

2

(
1+

√
1−

1

λ

)
. (6)

2.2 Results obtained by standard numerical
integrations

We derived the transition curves of electron-photon cascades
developing in matter, photon fields, and magnetic fields in
Fig. 2 by numerically solving the diffusion equations indi-
cated inRossi and Greisen(1941), the preceding subsection,
andAkhiezer et al.(1994), respectively.

We applied the trapezoidal method for integrations with
energy on a logarithmic scale. The results of the cascades

in matter agree very well with those indicated inNishimura
(1967), and also the results of cascades in magnetic fields
agree very well with those ofAharonian and Plyasheshnikov
(2003). Nevertheless, we could not get very good agreement
for cascades in photon fields with the incident energy fixed to
κ0 = 103, with those obtained byAharonian and Plyashesh-
nikov, as compared in Fig.2.

It was very difficult to carry out accurate integrations with
energy in Eqs. (3) and (4) in cases of high primary ener-
gies, due to the appearance of a very sharp peak in the
cross-sections of Fig.1 at fractional energies (v andu) of
almost 1. We therefore applied variable transformations of
the double exponential type in those integrations, and thus
obtained qualitatively good results as shown in Fig.3 for
shower curves with the threshold energy fixed toκthr = 1.
Quantitative comparisons with the results ofAharonian and
Plyasheshnikovin Fig. 3 show good agreement for the curve
with the incident energy ofκ0 = 10. However, our curves
with the higher incident energies differ significantly from
theirs in peak electron numbers and peak positions. One
probable reason for such large discrepancies is thatAharo-
nian and Plyasheshnikovmight use a doubled value for the
radiation lengthX(G)0 of Eq. (2) except for the case ofκ0 = 10
in Fig. 3, though further investigations are necessary to get
consistent results.

3 Transport property of energy spectra for cascades
in photon fields

The energy spectra of cascade electrons and photons show
characteristic shapes and changes in photon fields, as indi-
cated in Figs.4 and 5. We attempt to explain the trans-
port properties of electron and photon spectra by analyti-
cally solving differential-difference equations for cascades
in photon fields with simplified cross-sections. To learn the
reasons for these characteristic features of the transition of
this cascade, we use the analytical solution of the cascade in
the photon fields with cross-sections simplified from Eqs. (5)
and (6).

3.1 Generation-separated differential energy spectra

We assume

φ(κ,v)=
1

2
, and ψ(λ,u)=

1

2
, (7)

or simply approximate the cross-sections to be1

dNIC(εγ )

dεγ
'

3σT

4κεe
, and

dNPP(εe)

dεe
'

3σT

4λεγ
, (8)

1 If the value ofX(G)0 is doubled, the values ofφ(κ,v) and
ψ(λ,u) are doubled. Thenφ andψ agree with Fig.1 and act as
the correction factors of the approximated cross-sections (8), when
expressions appearing in this subsection are slightly simplified as
t/2 to be replaced byt .
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Fig. 2. Transition curves of shower electron developing in matter (left), photon fields (middle), and magnetic fields (right). Our results in
matter (lines) are compared with the analytical results inNishimura(dots), and our results in photon fields withκ0 = 103 and in magnetic
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)
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)
1
3 (lines) are compared with those ofAharonian and Plyasheshnikov(dots).

and attempt to reproduce the shower spectra indicated in
Figs. 4 and5. Then the diffusion Eqs. (3) and (4) are de-
scribed as

∂

∂t
π(κ,t)+

κ0

2κ
π(κ,t)−

κ0

2

∫ κ0

κ

π(κ ′,t)

κ ′2
dκ ′

= κ0

∫ κ0

κ

γ (λ′,t)

λ′2
dλ′, (9)

∂

∂t
γ (λ,t)+

κ0

2λ
γ (λ,t) =

κ0

2

∫ κ0

λ

π(κ ′,t)

κ ′2
dκ ′. (10)

At first, we derive the Green functions for electron and
photon transports,Gπ (κ,t;κ ′) andGγ (λ,t;λ′), by replacing
right hand sides of Eqs. (9) and (10) with δ(κ−κ ′) andδ(λ−

λ′), respectively. Applying Mellin transforms

M(s,t)=

∫
∞

0

(
κ

κ0

)s
π(κ,t)dκ, (11)

N (s,t)=
∫

∞

0

(
λ

κ0

)s
γ (λ,t)dλ, (12)

we get differential-difference equations

∂

∂t
M(s,t)+

s

2(s+1)
M(s−1,t)=

(
κ ′

κ0

)s
, (13)

∂

∂t
N (s,t)+

1

2
N (s−1,t)=

(
λ′

κ0

)s
. (14)

The solutions for respective Mellin transforms are

M(s,t) = (κ ′/κ0)
s

(
1+

κ0t

2κ ′(s+1)

)
e−κ0t/(2κ ′), (15)

N (s,t) = (λ′/κ0)
se−κ0t/(2λ′), (16)

and applying inverse Mellin transforms, we have

Gπ (κ,t;κ
′) =

{
δ(κ−κ ′)+

κ0t

2κ ′2

}
e−κ0t/(2κ ′), (17)

Gγ (λ,t;λ
′) = δ(λ−λ′)e−κ0t/(2λ′). (18)
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Fig. 3. Comparison of transition curves of shower electron in pho-
ton fields between ours (thin lines) and Aharonian and Plyashesh-
nikov’s (thick lines), with the threshold energy ofκthr = 1, and with
the incident photon energies ofκ0 = 10, 102, 103, and 104, from
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Applying the Green functions to Eqs. (9) and (10), we get
the differential spectra up to the second generation on which
suffix 1 corresponds to the first generation and 2 to the second
generation:

γ1(λ,t) = Gγ (λ,t;κ0)= δ(λ−κ0)e
−t/2, (19)

π1(κ,t) =

∫ t

0
dt ′
e−t

′/2

κ0

∫ κ0

κ

Gπ (κ,t− t
′
;κ ′)dκ ′

=
t

κ0
e−t/2,

(20)

γ2(λ,t) =

∫ t

0
dt ′
t ′

2
e−t

′/2
∫ κ0

λ

(
1

λ′
−

1

κ0

)
Gγ (λ,t− t

′
;λ′)dλ′

=
1

κ0

{
te−t/2−

2u

1−u

(
e−t/2−e−t/(2u)

)}
, (21)
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Fig. 4. κ-weighted differential energy spectra of electron,κπ(κ,t), at depths oft = .01,.02,.05,.1,.2,.5,1,2,5, for incident photon of
κ0 = 10, 102, and 103, from left to right.
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Fig. 5. λ-weighted differential energy spectra of photons,λγ (λ,t), at depths oft = .01,.02,.05,.1,.2,.5,1,2,5, for incident photons of
κ0 = 10, 102, and 103, from left to right.

π2(κ,t) =

∫ t

0
dt ′
∫ κ0

κ

dµGπ (κ,t− t
′
;µ)

×

∫ κ0

µ

1

κ ′2

{
t ′e−t

′/2
−

2κ ′

κ0−κ ′

[
e−t

′/2
−e

−
t ′

2κ′/κ0

]}
dκ ′

=
2

κ0

∫ 1−v

0

1

v′(1−v′)

[
t
(
e−t/2/(1−v′)

+e−t/2
)

+
4(1−v′)

v′

(
e−t/2/(1−v′)

−e−t/2
)]
dv′, (22)

whereγ1(λ,t) is the spectrum of the incident photon and its
survival, π1(κ,t) that of electrons produced byγ1, γ2(λ,t)

that of photons produced byπ1, andπ2(κ,t) that of electrons
produced byγ2; v andu denote the fractional energiesκ/κ0
andλ/κ0, respectively. Theκ andλ weighted differential
spectraκπ1(κ,t), λγ2(λ,t), andκπ2(κ,t) are functions ofv
andu, as indicated in Fig.6.
π1(κ,t) does not depend onκ and increases proportion-

ally to t at t � 1, which well explains the early stage (t < 1)
of the electron spectrum ofκ0 = 10 in Fig.4. γ2(λ,t) is ap-

proximated by1
4

(
1
λ
−

1
κ0

)
t2 at t � 1, which well explains

the photon spectrum ofκ0 = 10 atλ>0.1 in Fig.5.

We could explain the above few stages but could only
slightly explain other stages of shower spectra by our
generation-separated energy spectra, Eqs. (19)–(22). This
was because the approximated cross-sections (8) were too
simple, valid only forκ andλ between 1 and 10. More accu-
rate cross-sections should be taken into account to reproduce
the spectra of showers initiated by higher incident energies.

3.2 Electron cooldown process

For the particle energies ofκ <1, the pair production process
is suppressed by the inequality in Eq. (6). As a result, pho-
tons stop interacting in the field and in turn electrons are not
produced from photons, and electrons only lose their ener-
gies by the inverse Compton scattering. We call this process
the electron cooldown process.

At energy regions ofκ � 1, the inverse Compton cross-
section is approximated with a considerable accuracy by

φ(κ,v)'
1

2
, with v <1/

(
1+

1

4κ

)
' 4κ, (23)
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then electrons diffuse as

∂π(κ,t)

κ0∂t
=

1

κ

∫ 1

0

{
φ(

κ

1−v
,v)π(

κ

1−v
,t)−φ(κ,v)π(κ,t)

}
dv

'

∫ 1

0
v
∂

∂κ
{φ(κ,v)π(κ,t)}dv

' 8κπ(κ,t)+4κ2 ∂

∂κ
π(κ,t). (24)

Applying Mellin transforms, we have

∂

∂t
M(s,t)+4κ2

0sM(s+1,t)= 0. (25)

The solution for the initial conditionπ(κ,0)= δ(κ−κ ′) is

M(s,t)=
(κ0

κ ′
+4κ2

0 t
)−s

, (26)

then, applying inverse Mellin transforms, we have

π(κ,t) =
1

2πi

∫ σ+i∞

σ−i∞

κ0
s

κs+1

(
κ ′

κ0+4κ2
0 tκ

′

)s
ds

= δ(κ−(
1

κ ′
+4κ0t)

−1). (27)

This solution indicates that the electrons lose their energy
from κ ′ to κ as

1

κ
=

1

κ ′
+4κ0t, (28)

after the penetration of deptht .2 As electrons produced by
the pair production process have some finite energies due to
the inequality in Eq. (6), electron spectra have the lower cut-
off κlc. The value ofκlc decreases according to Eq. (28), as
typically shown in Fig.4 of κ0 = 102.

2 This formula is also derived from the equation of the mean
energy dissipation,− d

κ0dt
κ =

∫ 1
0 vφ(κ,v)dv'

1
2

∫ 4κ
0 vdv= 4κ2.

Under the cascade process in the photon field, elec-
trons are produced from photons by a spectrum form of
π(κ ′,t)dκ ′

' const. dκ ′, according to the pair production
cross-section in Fig.1. After the cooling down, they show
the spectrum form of

π(κ,t)dκ = const. ×
∂κ ′

∂κ
dκ

= const. × (1−4κ0κt)
−2dκ

'
const.

16κ2
0 t

2
κ−2dκ for 4κ0κt� 1. (29)

Thus electrons show power-law type energy spectra of index
−2, as indicated in Fig.4 in energy regions ofκ < 1 at t > 1
for κ0 = 102 and att >0.1 for κ0 = 103.

Under the electron cooldown process, photons of energyλ

are supplied only by electrons of energy greater thanκ ′ of

κ ′
= (λ+

√
λ2+λ)/2'

√
λ/2, (30)

according to the inequality of Eq. (23). They then stop inter-
acting in the field, so the diffusion Eq. (10) becomes

∂

κ0∂t
γ (λ,t) =

∫ κ0

√
λ/2

π(κ ′,t)

2κ ′

dκ ′

κ ′
. (31)

We assume the power-law type electron spectrum,
π(κ,t)' κ−2f (t), according to Eq. (29). As electrons cool
down very slowly, their energy spectra have the lower cut-
off κlc. When the lower bound of the integral in Eq. (31) is
contained in the electron spectrum, or

√
λ/2>κlc, Eq. (31)

becomes

∂

κ0∂t
γ (λ,t) '

f (t)

6

(√
λ

2

)−3

'
4

3
f (t)λ−3/2. (32)

So photons show power-law type energy spectra of index
−3/2, as typically indicated in Fig.5 at 0.01<κ < 1, t >0.5
for κ0 = 102 and at 0.01<κ < 1, t >0.1 for κ0 = 102.
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On the other hand, when the lower bound of the integral
in Eq. (31) is out of the electron spectrum, or

√
λ/2< κlc,

the photon spectrumγ (λ,t) becomes constant irrespective
of their energyλ, as typically indicated in Fig.5 at about
κ < 0.01 for κ0 = 10, aboutκ < 0.01, t < 0.5 for κ0 = 102

and aboutκ < 0.01, t < 0.1 for κ0 = 103 for κ0 = 103. These
results quantitatively support the investigations ofAharonian
and Plyasheshnikov(2003) for the energy spectra in these
regions.

4 Conclusions

We evaluated electron-photon cascades developing in mat-
ter, photon fields, and magnetic fields by solving diffusion
equations using a standard numerical integration method,
and compared the results with the analytical results indicated
in Nishimura(1967) and with those derived by the adjoint
method ofAharonian and Plyasheshnikov(2003).

Our results for cascades in matter and in the magnetic
fields agreed well with those indicated inNishimura and
Aharonian and Plyasheshnikov, though those in photon fields
showed a slight discrepancy for showers with high incident
energies (κ0 ≥ 100), where the cross-sections increase very
steeply near the primary energy and the computation times
are increased.

We also investigated the transport property of energy spec-
tra of cascades in photon fields by obtaining the analytical
solutions of differential-difference equations assuming sim-
plified cross-sections. We partially succeeded in explaining
electron and photon spectra ofκ > 0.1 at very early stages
(t < 0.1) for cascades with low incident energy (κ0 = 10),
though more accurate cross-sections than Eq. (8) should be
taken into account for cascades with higher incident ener-
gies. Solutions of the electron cooldown process based on the
cross-sections with Eq. (23) well explained the shapes of the
electron and photon spectra of very low energy (κ� 1) quan-
titatively. We are improving our method to make it applicable
to higher energy regions and deeper developing stages.
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